
Seminar Project (5 ECTS)

for

Adaptive Frame Rate for Egocentric Vision

by Maria Monzon

Date: July 15, 2019
Supervisors: Giovanni Schiboni, Prof. Dr. Oliver Amft

Contents

1 Introduction 1

2 Related work 1

3 Methodology Summary 2

4 Methods 3
4.1 Dataset . 3
4.2 Adaptive Sampling . 3
4.3 Machine Learning Pipeline . 9
4.4 Energy Model . 10

5 Evaluation Methods 22

6 Results 23
6.1 Spotting Performance . 23
6.2 Energy Consumption . 25

7 Discussion 25

8 Conclusion 26

References II

List of Figures II

List of Tables II

A

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

1 Introduction

The increasing development new media and data acquisition techniques have lead to new
innovative video recording set ups. A clear example of that is the egocentric video, where
a camera on head or on the chest approximates the visual field of the camera wearer.

This new camera setting offers a valuable perspective to understand user’s activities and
their context. In our case, the wearable head-mounted egocentric camera set up pursued
a dietary event spotting in a free living condition. [1]

A main feature of free-living data is a long recording duration. However, this kind of
camera often acquire irrelevant data for the analysis task.

In this work we introduce an adaptive sampling strategy to dynamically tune the sam-
pling rate of a wearable egocentric camera. The adaptive sampling rate is based on a
context measure. It is a motion measure, indicative if the recorded activity might be of
our interest.

The clear advantages of an adaptive frame rate is saving energy as the camera will not be
acquiring data full time. This would help to overcome the limitations of the video recording,
in terms of power consumption, while maintaining acceptable performance. Furthermore,
less data acquisition will also mean an energy saving in processing.

This new set up will enable longer video recordings, improve the autonomy of the egocentric
video frameworks and the the need of small batteries.

2 Related work

In literature we can find similar works that aim to reduce the energy consumption. Salim et
al. [2] proposed a method to combine frame rate and similarity detection for video sensors.
A context measure based on the similarity between consecutive frames was employed,
composed by a measure of colour intensity and comparison between edges. The number
of frames employed in the sensor network were reduced without losing any important
information.

A similar study focused on egocentric video was carried out by Possas et al. [3]. A
reinforcement learning model-free method to learn energy-aware policies was introduced.
Their work maximized the use of low-energy cost predictors while keeping competitive
accuracy levels. The context measure used was a motion predictor and a vision predictor,
based on the type of activity detected.

For the simulation of energy consumption examples of energy model for image sensors can
be found. LiKamWa et al.[4] introduced an energy characteristics of CMOS image sensors
in the context of computer vision applications. The authors described an experimental

1 Introduction Friedrich-Alexander University 1

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

power characterization of five CMOS image sensors energy in order to evaluate the energy
per pixel under various image quality requirements and energy-proportional mechanisms.

We based our investigation on results presented by LiKamWa et al for the simulation
of the sensing components in order to evaluate the effectiveness of adaptive frame rate
strategy.

3 Methodology Summary

The egocentric video with adaptive sampling framework is divided in two main blocks:
adaptive sampling strategy and machine learning pipeline, as showed in the block diagram
of Figure 1.

The adaptive sampling strategy starts processing the CMOS acquired frames from which
a motion based context measure is extracted. From that context measure a mapping into
a linear response model is done. Finally, the output of the response model indicates the
compression factor for the next instant. Once the frame is sampled, it is forward feeded
to the onvolutional neural network (CNN) as a knowlwdge extractor. The output will be
the input of the heuristic decision to determine if a dietary event is present.

Camera

Context
Measure

Response
Model

CNN Heuristic

eating

not eating

θt

Ct+1

Adaptive Sampling

Machine Learning Pipeline

Figure 1: Block diagram of our framework

We implemented a computational simulation to evaluate the efficiency of our sampling
strategy in terms of energy consumption. Our energy model considers the CMOS sensor,
the response model and CNN processing by the microcontroller. For the energy consump-
tion model an analytic breakdown of the code was done. For each algorithm a counting of
floating-point operations (FLOP) was carried out.

3 Methodology Summary Friedrich-Alexander University 2

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

4 Methods

4.1 Dataset

The original dataset is taken from the work of Schiboni et al. [1]. The video recordings
consist of normal daily routine activities such as attending academic classes, having lunch,
displacement in public transport...The average recording time per day is around 8 hours,
that were downsampled to only one image per second. The total dataset is composed 14373
annotated frames.

Day Total Frames Bottle Can Dish Mug Glass Annotated Frames

Day 1 31980 580 - 2973 631 497 2791
Day 2 22570 220 4 1290 2 1 1461
Day 3 32814 947 417 4034 618 1836 4574
Day 4 24953 446 108 1790 3 9 2312
Day 5 26895 81 7 2137 1069 1104 3234
Total 139212 2242 536 12224 2323 3447 14373

Table 1: Dataset Annotations Summary

This dataset was originally to train neural networks, but a further dataset containing the
spotting of dietary events was derived. In this activity dataset, 5 days of video were
labelled with activity interval such as fluid drink, food intake, but also food preparation
and cooking, cleaning dishes...

4.2 Adaptive Sampling

Adaptive sampling is a technique designed such that the sampling is modified in real
time based on a feature learned from previous acquired data. In our work, the adaptive
sampling strategy is composed of two steps: context measure (section 4.2.1) and response
model (section 4.2.2).

Figure 2: Adaptive Sampling overview

4 Methods Friedrich-Alexander University 3

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

4.2.1 Context measure

Our aim for the seminar is to extract a context measure for tuning the adaptive frame
rate. A context measure is any quantifiable information that can be used to characterize
the situation of an action or an environment of an entity. In our work we implement a
motion based context measure, following a common pipeline in computer vision.

Context Measure

Image
Feature

Detection
Optical Flow Displacement

Response
Model

Figure 3: Adaptive sampling block diagram. First features are detected for every image.
Then the optical flow is calculated for those features between two frames. Finally
the motion measure is derived from the optical flow, that will be the input feed
forwarded to the response model.

4.2.1.1 Feature detection

Features, in image processing, are specific structures such as points, edges, corners or
objects. Feature detection and extraction derive values (or features) from a given image,
descriptive for the object detection, facilitating the further learning steps.

Shi Tomasi Corner Detection A corner is an image point which is composed by two
different dominant edge directions in the near proximity of the point. Shi and Tomasi [5]
follows an identical approach to Harris Detector[6], but they made a small modification in
the score function of the corners.

Both detectors discern points based on the local intensity variation, quantifying local
changes within the image and small shifted neighbor patches. A small region around
the corner should have a large intensity change when correlated with windows shifted in
any direction.

Our implementation in python is done using the Open CV library. Shi-Tomasi method
algorithm finds the N strongest corners in the image, in gray scale. It take as an input the
following parameters:

• maxCorners: maximum number of corners wanted to be found

• blockSize : It is the size of neighbourhood considered for corner detection

4 Methods Friedrich-Alexander University 4

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

• thr: minimum quality level of corner below which everyone is rejected (between 0-1)

• minDist: minimum euclidean distance between corners detected

The idea and main steps form the Shi Tomasi corner detection can be found in the next
algorithm. Further details can be found in section 4.4.2.1

Algorithm 1 ShiTomasiCornerDetection

Input: Gray scale Image I
Output The 2D coordinates of a corner pixels

1: procedure ShiTomasiCornerDetection(I,maxCorners, thr,minDist, blockSize)
2: Ix, Iy ← SpatialImageDerivatives(I)
3: IG ← AutocorrelationMatrix(Ix, Iy)
4: for p ∈ I do
5: M ← SecondMomentMatrix(IG, blockSize)
6: λmin ←MinEigenvalue(M)
7: if λmin ≥ thr then
8: corners(p)← λmin

9: else
10: corners(p)← 0

11: corners← selectCorners(corners)

12: return corners

4.2.1.2 Lukas Kanade Optical Flow Estimation

The optical flow is the apparent motion of the brightness pattern in an image caused by
the projection of real motion on the focal plane [7].

The Lucas Kanade method assumes that the displacement of the image content between
two consecutive instants within a neighbourhood window (adjacent frames) is constant.
The algorithm only uses the gray value at each pixel, the level of intensity of the image.
Lucas-Kanade method takes a k × k patch around the point and assumes that the flow is
constant in a local neighbourhood of the pixel i.e. the level within a local image window.
So all the k × k points have the same motion. So now our problem turns into solving two
unknown variables with k × k equations. The final solution of the Lucas Kanade optical
flow is a 2 equations system,[

u
v

]
=

[∑
i Ixi

2 ∑
i Ixi

Iyi∑
i Ixi

Iyi
∑

i Iyi
2

]−1 [−∑i Ixi
Iti

−
∑

i IyiIti

]
(1)

where Ix, Iy state for image derivatives in horizontal and vertical directions correspondingly
and It the time derivative. The summatory extends along all the values of the neighbour-
hood patch. The pseudo-code of the Lucas Kanade implementation can be seen in more
details in the Algorithm 2

4 Methods Friedrich-Alexander University 5

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Algorithm 2 Lucas Kanade Optical Flow

Input: 2D I, J images and pixel with the width of a window
Output u The 2D displacement of the pixel represented by W

1: procedure LucasKanade(I,J,W)
2: u← 0
3: iter ← 0
4: Gx, Gy ← Gradient(I)
5: while |u∆| < ε or iter ≥MaxIter do . Until convergence
6: Z ← Compute2DGradients(Gx, Gy,W).
7: e← ComputeErrorVector(I, J,Gx, Gy,W,u)
8: u∆ ← SolveGRadientIncrement(Z, e)
9: u← u+ u∆

10: iter ← iter + 1

11: return u

Our implementation in python follows the further approach of the pyramidal implemen-
tation from Bouguet [8]. An iterative implementation provides sufficient local tracking
accuracy. The main idea to apply Iterative Lukas Kanade Algorithm is:

1. Estimate displacement at each pixel by solving Lucas Kanade optical flow equations

2. Warp It towards It+1 using the computed flow

3. Repeat until convergence or a fixed number of iterations

The iterative algorithm can be schemitized in the following diagram. (Figure 4) but further
details can be found in the analytic breakdown of the code in Section 4.4.2.2

Iterative Optical Flow

2 Frames ,
Corners

Image
Pyramid

Spatial
Gradient
Matrix

Image
Derivative

Error Vector Optical flow
Corner

location in
2nd frame

for every level

Figure 4: Pyramidal Lucas Kanade optical flow Detector

4.2.1.3 Derive Displacement

Th output of the optical flow are the keypoint descriptors coordinates in the second frame,
i.e. corners. The final step is to the extract the context measure θ. The mean of the
euclidean distance between all the corners in both frames was computed. Our context
measure is a motion based indicative of the total displacement between 2 sampled frames.

θt =
1

N

N∑
i=1

√
(uxi
− vxi

)2 + (uyi − vyi)2 (2)

4 Methods Friedrich-Alexander University 6

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

4.2.2 Response Model

The feed-forwarded response model takes as input the context measure, the derived mean
displacement from the optical flow between frames. A linear mapping function converts
the input to compression a factor according to Equation. 3

Ct+1 = Cmin +

[
Cmax − Cmin

θmax − θmin

· θt − θmin

]
(3)

where θt represents the context measure, θmin the minimum and θmax maximum context
measure values and Cmax, Cmin the limits of the compression output factor.

Figure 5: Example of histogram where the displacement context measure for day 2 is shown.
The y-axis is plotted in logarithm scale.

We fixed these parameter by plotting various histograms of the context measure.The pa-
rameter θmin was fixed at a value of 5 whereas θmax is varying to obtain different sampling
reduction. Analogously, a maximum compression factor was set to 1 and the minimum to
0.1. These sampling strategy system parameters can be modified.

4 Methods Friedrich-Alexander University 7

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

θmin θmax

Cmin

Cmax

Context Measure

C
om

p
re

ss
io

n
F

ac
to

r

y

x

Figure 6: Linear response model for the context measure and compression factor of the
adaptive sampling framework.

The compression factor is set as a threshold for a further random sampling strategy. Ran-
dom sampling is a kind of non-uniform sampling where a sample is considered based on
a stochastic decision. The compression factor can be defined as the portion of sampled
frames between the total within batch.

C =
Sampled frames

Total frames
(4)

Therefore a compression factor of 0.1 will mean that there is a probability that 1 out of
10 frames will be not sampled. It represents the probability of a skipping a frame in our
random adaptive sampling strategy.

4 Methods Friedrich-Alexander University 8

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

4.3 Machine Learning Pipeline

4.3.1 Convolutional Neural Network (CNN)

In order to detect dietary events, in our work we employ the deep convolution network
presented in [1]. Specifically, a Darknet framework was implemented but following a
YOLO9000 [9] structure to enable the object detection in real time. Both classification
and detection from this work is done on using that pretrained network.

Figure 7: CNN Arquitecture representation

This Deep Neural Network was trained using the so-called transfer learning technique. A
neural network model is first trained on similar context and then it is exploited to improve
generalization of another deep learning network. Classification uses only the first 16 layers
of the total proposed in Darknet 19.

4.3.2 Heuristics

The output of the CNN are the labels indicating if a frame contains a dietary object, such
as bottle, can, dish, mugs or glass. Individual frames therefore were associated with a
binary value:

F =

{
1, if object present

0, otherwise

An intuitive heuristic was adopted determine a true positive. If three or more consecutive
frames had a diatary object F = 1, then it was considered to spot a dietary event .

4 Methods Friedrich-Alexander University 9

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

4.4 Energy Model

In order to determine the energy saving score of our approach, it is necessary to determine
the energy consumption of our set up. Unfortunately, it is unfeasible to perform actual
energy measures without interfere in the energy consumption process. Therefore, to vali-
date the energy saving, the final point of our work was to derive and simulate the energy
consumption models for the microprocessor and the camera.

Etotal = ECMOS + Emicrocontroller (5)

The total energy will be the sum of the both, sensing component and processor of our set
up. Our energy will consider the energy of CMOS sensor for the video recording. The
microcontroller energy consumption corresponds to the processing of the response model
and the computations for the machine learning pipeline.

4.4.1 CMOS Sensor Energy Model

The energy consumption model for the CMOS sensor is calculated based on the actual
work of Likamwa et all.[4] In their work they revealed that the energy consumption of the
sensor can be reduced by putting components in standby after exposure time. According
to this aggressive standby mode, the corresponding to the energy per frame is given by the
following expression:

Eframe[Wh] ≈ Pidle[W]Texp[h] + Pactive[W]Tactive[h] (6)

where Pidle is the power consumption in idle state, Pactive power consumption in active state,
Texp corresponds to the exposure time of the camera and Tactive time in active state.

The power consumption values are extracted from [4]. The power consumption values for
a CMOS with similar characteristics to our set up are:

Pactive = 225.1 mW Pidle = 218.6 mW

The time in active state can be approximated as the relation between number of pixels in
a frame and the clock frequency. Our camera records in a resolution of 640x640.

Tactive =
N

f
=

640 · 640 [pixel]

24 [MHz]
=

409600

24000000
= 0.017066 s = 4.74 · 10−6 h (7)

The exposure time value is fixed at 50 ms. It is the maximum reasonable value for outdoor
conditions, according to Likamwa et al.

Texp = 50.00 ms = 13.88 · 10−6 h

4 Methods Friedrich-Alexander University 10

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

When the CMOS sensor completes the acquisition of a frame it enters aggressive standby
mode. The energy saving comes due to the fact the frame rate is adapted extending the
standby time, where it consumes minimal power. Therefore, the energy per frame remains
constant even if the frame rate changes.

We will like to remark that our frame rate is 1 FPS, thus the time of standby is defined as
the remaining time until 1 second (frame time). The summary of the energy consumption
simulation model can be found in Table 2

Parameters Value
Pactive 225.1 mW
Pidle 218.6 mW
Tactive 0.017 s
Texp 0.0500 s

Tstandby 0.9323 s
Eframe 4.1 µWh

Table 2: CMOS energy model characterization summary

4 Methods Friedrich-Alexander University 11

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

4.4.2 Microcontroller Energy Model

The microcontroller also needs an energy estimation that is proportional to the execution
time. The energy model can be derived directly from the execution time for both, the
response model and the CNN. The energy of the microcontroller can be estimated as

Eframe[Wh] = Pactive[W] · texec[h] (8)

The micro controller used in our work is Arm Cortex A7 from a raspberry Pi 2 (ARM
Cortex A72 Quad Core). The details about the microcontroller can be found in Table 3

Microcontroller Paverage Pidle GFLOPS/W GFLOPS Frequency
ARM Cortex A7 3.4 W 1.8 W 0.432 1.47 1.5 GHz

Table 3: ARM Cortex A7 technical especifications

The execution time can be estimated as the number of floating point operator executed
divided by the number of cycles the mincrocontroler needs. FLOPS stands for floating
point operations per second a processor can perform per second i.e. a computer speed
measure. The power consumption can be derived from the measure GFLOPS per Watt
(GFLOPS/W) i.e. the number of 109 floating point operations per second that can be
executed with a Watt of electrical power.

Pactive =
GFLOPS

GFLOPS/W
≈ 3.4W (9)

For the estimation of the execution time we need consequently the number of FLOP.
FLOP is single floating operations done by the microcontroller during the runtime of the
simulation. That is estimated by providing for each function the number of arithmetical
operations.

Emicrocontroller = Econtext + ECNN (10)

Each algorithm has been decomposed in sub-algorithms blocks. The total number of
estimations has been derived. In the next subsection the analytical break down of the
code is detailed. For the purposes of FLOPS measurements, usually only additions and
multiplications are included. Things like divisions, square roots... have been also taken
into as single operation. The comparisons are depreciated as they are too trivial.

4.4.2.1 Analytic Break Down of Shi Tomasi Corner Detector

The algorithm of Shi Tomashi for corner detection can be decomposed in this four main
steps: calculate image derivatives with a gradient filter, calculate the weighted auto-
correlation matrix from the. For each corner calculate the minimum eigenvalue and finally
compute a cornerness score and select the strongest ones.

4 Methods Friedrich-Alexander University 12

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Shi Tomasi Corner Detection

Frame
Image

Derivative

Weigthed au-
tocorrelation

Matrix

Minimum
Eignvalues

Select
Corners
Score

Corners
Coordinates

for every point

Figure 8: Shi Tomasi corner detector

The first step of the algorithm is to perform the spatial image derivative of the frame. In
our implementation the derivate are calculated by the convolving it with the Sobel filter.
The output of the algorithm is the spatial horizontal and vertical derivates of the image.

Algorithm 3 SpatialImageDerivatives

Input: Gray scale Image I
Output Spatial image derivatives with respect to x and y

1: procedure PartialDerivative(I,maxCorners, thr,minDistance, blockSize)
2: kernelx ← SobelFilterGx(m)
3: kernely ← SobelFilterGy(m)
4: for px, py ∈ I do
5: Ix[px, py]← 2DConvolution(I, kernelx)
6: Iy[px, py]← 2DConvolution(I, kernely)

7: return Ix, Iy

The mathematical formulation of 2-D convolution is given by

kx =

−1 0 1
−2 0 2
−1 0 1

Ix [i, j] =

∞∑
m=−∞

∞∑
n=−∞

kx [m,n] · I [i−m, j − n] (11)

The total FLOP operation are summarized on the following table where M corresponds
to the x-size and N to the y-size of the Sobel filter and Px, Py to the pixels in the image
correspondingly.

operation add mult div sqrt comparisons
2D Convolution M ·N M ·N 0 0 0

Image derivatives 2(PxPy)(M ·N) 2(PxPy)(M ·N) 0 0 0

Table 4: Floating point operations for spatial image derivatives

4 Methods Friedrich-Alexander University 13

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Once we have the image derivates, the weighted autocorrelation matrix is calculated. This
step is again subdivided in 2function in our analysis, the simple computation of the autocor-
relation matrix and then the weighted sum. The autocorrelation matrix is just composed
of the element wise multiplications of the image derivatives as follows:

IG =

[
Ixx Ixy
Ixy Iyy

]
=

[
IxIx IxIy
IyIx IyIy

]
(12)

where Ix corresponds to the image x derivative and Iy the y-direction image derivative.
The pseudo algorithm pf this simple function can be seen below.

Algorithm 4 AutocorrelationMatrix

Input:Spatial image derivatives Ix, Iy
Output Autocorrelation Matrix of the image IG

1: function AutocorrelationMatrix(Ix, Iy)
2: for px, py ∈ I do
3: Ixx[px, py]← Ix[px, py] · Ix[px, py]
4: Iyy[px, py]← Iy[px, py] · Iy[px, py]
5: Ixy[px, py]← Ix[px, py] · Iy[px, py]
6: IG = [[Ixx, Ixy], [Ixx, Iyy]]
7: return IG

operation add mult div sqrt comparisons
Tensor computation 0 Px · Py 0 0 0

Autocorrelation matrix 0 3(PxPy) 0 0 0

Table 5: Floating point operations for autocorrelation matrix

For each point px, py the weighted autocorrelation matrix is calculated, just averaged in
neighbourhood of a point.The window w is a binary window. The average window or block
size is specified as an input parameter.

M =
wx∑

x=−wx

wy∑
x=−wy

w(x, y)

[
IxIx IxIy
IxIy IyIy

]
(13)

4 Methods Friedrich-Alexander University 14

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Algorithm 5 Second Moment Matrix

Input:Autocorrelation matrix of the image IG and window size
Output Summed Second Moment Matrix M

1: function SummedMatrix(IG, blockSize)
2: M = [[0, 0], [0, 0]]
3: w ← blockSize/2
4: for i = −w to w do
5: for j = −w to w do
6: M11 ←M11 + Ixx[px + i, py + j]
7: M12 ←M12 + Ixy[px + i, py + j]
8: M22 ←M22 + Iyy[px + i, py + j]

9: M21 ←M12

10: return M

The result is the second moment 2x2 matrix M which summarizes the predominant
directions of the gradient in a specified neighbourhood. Note that the inverse diagonal
elements are equal. The total operations of both blocks can be seen in the following
table:

operation add mult div sqrt comparisons
Weighted matrix 3 · 2(wx · wy) 0 0 0 0
Total per image 3 · 2(wx · wy)(PxPy) 0 0 0 0

Table 6: Floating point operations for autocorrelation weighted matrix

Shi and Tomasi is based on the minimum eigenvalue of the autocorrelation matrix. The
score function for the corners is defined as

R = min(λ1, λ2) (14)

where λ refers to the eigenvalues of the matrix M . The autocorrelation matrix of an image
is symmetric and positive semidefinite, yielding two real non-negative eigenvalues. Taking
advantage of this condition, the eigenvalues can be derived directly from M.

λmin =
M11 +M22 +

√
(M11 −M22)2 + 4M2

12

2
(15)

Algorithm 6 Select Minimum Eigenvalue

Input:Second Moment Matrix M
Output Minimum eigenvalue λmin of the Summed autocorrelation Matrix

1: function MinEigenvalue(M)
2: λmin ← 0.5 · (M11 +M21 + sqrt((M11 −M21)2 + 4M2

12)
3: return λmin

4 Methods Friedrich-Alexander University 15

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

operation add mult div sqrt comparisons
Minimum eigenvalue 4 2 1 1 0

Total Image 4(PxPy) 2(PxPy) PxPy PxPy 0

Table 7: Floating point operations of the minimum eigenvalue computation

The final steps is to select the corners according to a specified quality level and the non-
maxima suppression criteria. All corners below a quality level are rejected. The remaining
corners based on quality are sorted in the descending order. In our analysis we named this
function block as sort descending. Once we have all the sorted corners all all the nearby
corners in the range of minimum distance are thrown away. The euclidean distance is
computed .

De =
√

(cornerx1 − cornerx2)
2 + (cornery1 − cornery2)2 (16)

The corners at closer than the minimum distance are thrown away. The final output of
the Shi Tomasi corner detection algorithm are the MaxNumber strongest corners. In our
analysis we named this algorithm block as select corners, detailed below:

Algorithm 7 Select Corners

Input: corners, distance d
Output Selected corners

1: function SelectCorners(corners, d,N)
2: cornersSorteed← SortDescending(corners)
3: for c ∈ cornersSorted do
4: i← 0
5: for corner ∈ cornersSorted do
6: if EuclideanDistance(c, corner) > d then
7: selCorners[i]← corner
8: i← i+ 1

9: Return selCorners[0 : N]

operation add mult div sqrt comparisons
Sort descending 0 0 0 0 n

Euclidean distance 3 2 0 1 0
Select Corners 3C2 2C2 0 C2 C · C2

Table 8: Floating point operations of selection of strongest corners

The final floating point operations per frame for the Shi Tomasi corner detector are sum-
marized in the table below.

4 Methods Friedrich-Alexander University 16

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

operation add mult div sqrt
Image derivatives 2(PxPy)(MN) 2(PxPy)(MN) 0 0

Weigthed autocorrelation 3 · 2(wx · wy)(PxPy) 3(PxPy) 0 0
Minimum eigenvalue 4(PxPy) 2(PxPy) PxPy PxPy

Select corners 3C2 2C2 0 C2

Shi Tomasi detector
2(PxPy)(MN + 3wxwy)

+4PxPy + 3C2

2(PxPy)(MN)
5(PxPy) + 2C2 PxPy C2 + PxPy

Table 9: Floating point operations per frame for Shi Tomasi corner detection

4.4.2.2 Analytic break down of Lucas Kanade optical flow

The Lucas Kanade pyramidal algorithm can be further decomposed in this four main
subblocks:

Algorithm 8 pyramidal tracking Lucas Kanade Optical Flow

Input: 2D I, J images and u a point on image I
Output u The 2D displacement of the pixel represented by W

1: function PyramidalLucasKanade(I,J,u)
2: {IL}L=0,...,Lm , {JL}L=0,...,Lm ←ImagePyramidrepresentations(I, J)
3: gLm ← [0, 0] . Initialization of pyramidal guess
4: for L = Lm to L0 do
5: uL ← u/2L

6: Ix
L ← ImageDerivative(IL)

7: Iy
L ← ImageDerivative(IL)

8: G← SpatialGradientMatrix(Ix
L, Iy

L)
9: v(0) ← [0, 0] . Initialization of iterative L-K
10: while |η∆| < ε or k ≤ K do
11: dIk ← IL − JL(x+ gLx + vk−1

x , y + gLy + vk−1
y)

12: bk ← ComputeErrorVector(dIk, Ix, Iy)

13: η
(k)
∆ ← G−1 · bk . Lukas Kanade Optical Flow

14: v(k) ← v(k−1) + η
(k)
∆ . Guess for next iteration

15: k ← k + 1

16: dL ← v(K) . Final optical flow at level L
17: gL−1 ← 2(gL + dL) . Update the guess for next level [gL−1

x , gL−1
y]

18: d← dL0 + gL0

19: v ← u+ d
20: return v . corresponding point u is at location v on image J

In the iterative algorithm, is computed executing the Lucas Kanade optical flow in different
levels of an image pyramid. An image pyramid is a collection of images that are successively

4 Methods Friedrich-Alexander University 17

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

downsampled (or upsampled by interpolation) the specified number of levels. The details
of the algorithm implement follows the approach of Bouguet [8]

Algorithm 9 Image pyramid representation

Input:Image I and Lm is the height of the pyramid
Output Summed Second Moment Matrix M

1: function ImagePyramid(I, Lm)
2: for L = 0 to m do
3: for x = 0 to nL−1

x − 1 do
4: for y = 0 to nL−1

x − 1 do
5: IL[x,y]← 1

4
·IL−1[2x,2y]

6: IL[x,y]← 1
8(IL−1[2x−1,2y]+IL−1[2x+1,2y]+IL−1[2x,2y−1]+IL−1[2x,2y+1])

7: IL[x,y]+← 1
16(IL−1[2x−1,2y−1]+IL−1[2x+1,2y+1]+IL−1[2x−1,2y−1]+IL−1[2x+1,2y+1])

8: nL
x ≤ nL−1

x +1
2

9: nL
y ≤

nL−1
y +1

2

10: return IL

In our implementation the zero level image is the original frame I0 = I. The image width
and height at that level are defined as n0

x = Px and n0
y = Py. The pyramid representation

is then built in downsampling the image recursively. The floating point operations are
summarized below, being m the total number of levels of the Pyramid.

operation add mult div sqrt comparisons
Image calculation 8 0 3 0 0
Index calculations 1 0 1 0 0

Image pyramid 8m · nm

2m
+ 2m 0 3m · nm

2m
+ 2m 0 0

Table 10: FLOP Image pyramid computation

where m are the levels of the pyramid and n the pixels

The spatial gradient matrix equation is defined analogously to the Shi Tomasi corner
detector weighted image over the Image derivates

G =

px+wx∑
x=px−wx

py+wy∑
y=py−wy

[
I2
x[x, y] Ix[x, y]Iy[x, y]

Ix[x, y]Iy[x, y] I2
y [x, y]

]
(17)

The image derivatives Ix and Iy may be computed directly from the first image in the
neighbourhood of the the (2x+ 1)(2y + 1) of the input corner.

The next step and the first one from the iterative algorithm is to compute the image
difference between the current frame and the displaced next frame.

δIk[x, y] = IL[x, y]− JL(x+ gLx + vk−1
x , y + gLy + vk−1

y) (18)

4 Methods Friedrich-Alexander University 18

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

operation add mult div sqrt comparisons
Image derivatives 3(PxPy)(MN) 2(PxPY)(MN) 0 0 0
Spatial gradient 3 · (2wx + 1)(2wy + 1) 3 · (2wx + 1)(2wy + 1) 0 0 0

Table 11: FLOP spatial gradient matrix

where gL is the guess at the lowest level of the pyramid and v the new iterative displacement
guess derived from residual optical flow. This operations just is composed by a subtractions
of the transposed image so the operations are proportional to the pixels of the images.

operation add mult div sqrt comparisons
Image difference nL

xn
L
y 0 0 0 0

Table 12: FLOP Spatial gradient matrix

where nL just correspond to the number of pixels in the neighbourhood of the corner so
nx ≡ 2wx + 1. The next step is to find the so-called image mismatch error bk.

bk =

px+wx∑
x=px−wx

py+wy∑
y=py−wy

[
δIk[x, y]Ix[x, y]
δIk[x, y]Iy[x, y]

]
(19)

This error vector captures the residual difference between the image patches after trans-
lation. bk is defined as the weighted sum between the image difference and the image
derivates corrispondingly compute with the following pseudocode

Algorithm 10 Computation of Mismatch Image vector

Input:Image difference δIk, Spatial image derivatives Ix, Iy and window sizes
OutputError mismatch vector b

1: function ComputeErrorVector(dIk, Ix, Iy, wx, wy)
2: bx ← 0
3: by ← 0
4: for i = −wx to wx do
5: for j = −wy to wy do
6: bx ← bx + δIk[px + i, py + j] · Ix[px + i, py + j]
7: by ← by + δIk[px + i, py + j] · Iy[px + i, py + j]

8: return b = [bx, by]

The total amount of floating point operations are summarized in Table 13

operation add mult div sqrt comparisons
Error vector 2(2wx + 1)(2wy + 1) 2(2wx + 1)(2wy + 1) 0 0 0

Table 13: FLOP error vector

4 Methods Friedrich-Alexander University 19

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Finally the next step is to approximate the solution to the optical flow equation which has
the form:

η
(k)
∆ ← G−1 · bk (20)

For solving this equation as G is a full-rank 2× 2 matrix,then we can compute the inverse
directly (|G| = g11g22 − g12g21 6= 0)

G =

[
g11 g12

g21 g22

]
→ G−1 =

[
g11 g12

g21 g22

]−1

=
1

|G|

[
g22 −g12

−g21 g11

]

operation add mult div sqrt comparisons
Matrix Inverse 2 2 4 0 0

Vector Multiplication 2 4 0 0 0

Table 14: FLOP optical flow equation solving

The rest of the steps of the algorithm are just the updating of parameters that can be
all englobed as a vector addition where for each update the floating point operation are
indicated as vector operations in the summary Table15.

operation add mult

Image pyramid 9 · PxPm
y

2
+ 2m 3 · PxPm

y

2
+ 2m

Image derivative (2wx + 1)(2wy + 1) 0
Spatial gradient 3 · (2wx + 1)(2wy + 1) 3 · (2wx + 1)(2wy + 1)
Image difference (2wx + 1)(2wy + 1) 0

Error vector 2 · (2wx + 1)(2wy + 1) 2 · (2wx + 1)(2wy + 1)
Optical flow 4CmKm 6CmKm

vectors operations 2CmKm + Cm+ 2 0

Pyramidal LK
9 · PxPm

y

2
+ 2m+ 6CmKm + Cm+ 2+

(2wx + 1)(2wy + 1)mC(4 + 3Km)
3 · PxPm

y

2
+ 2m+ 6CmKm

(2wx + 1)(2wy + 1)mc(3 + 2Km)

operation div sqrt comp
Image pyramid 0 0 0

Image derivative (2wx + 1)(2wy + 1) 0 0
Spatial gradient 0 0 0
Image difference 0 0 0

Error vector 0 0 0
Optical flow 4CmKm 0 0

Vectors operations cm 0 0

Pyramidal LK
c ·m(2wx + 1)(2wy + 1)

+4C ·m ·Km + c ·m 0 0

Table 15: FLOP Lucas Kanade optical flow

4 Methods Friedrich-Alexander University 20

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

where Px ·Py stands for the total number of pixel of the image , wx, wy indicate the window
width and height, m indicates the level of the pyramid size and C indicate the number of
corners returned by Shi Tomasi algorithm and Km indicate the number of iterations of the
iterative optical flow.

4.4.2.3 Analytic Break Down of CNN

The Darknet-19 structure in YOLO9000 has originally 26 layers and consists of convolu-
tional and maxpool-layer [9]. However in our work, in classification uses only the first 16
layers. The FLOP for the convolutional layers are calculated according to the Eq 21.

GFLOP = (2.0 · filters · size · size · channels · outputheight · outputwidth)/109 (21)

Type Filters Size/ Stride Output FLOP
Convolutional 32 3 x 3 224 x 224 28901376

Maxpool 2 x 2/2 112 x 112 54656
Convolutional 64 3 x 3 112 x 112 14450688

Maxpool 2 x 2/2 56 x 56 12544
Convolutional 128 3 x 3 56 x 56 7225344
Convolutional 64 1 x 1 56 x 56 401408
Convolutional 128 3 x 3 56 x 56 7225344

Maxpool 2 x 2/2 28 x 28 3136
Convolutional 256 3 x 3 28 x 28 3612672
Convolutional 128 1 x 1 28 x 28 200704
Convolutional 256 3 x 3 28 x 28 3612672

Maxpool 2 x 2/2 14 x 14 784
Convolutional 512 3 x 3 14 x 14 1806336
Convolutional 256 1 x 1 14 x 14 1000352
Convolutional 512 3 x 3 14 x 14 1806336
Convolutional 256 1 x 1 14 x 14 1000352

Softmax - - - -
Total 71314704

Table 16: Darknet CNN FLOPS operation

The total number of Gigaflops performed by the CNN per frame is 0.0713 GFLOPS.

texec =
0.0713 [GFLOP]

1.47 [GFLOPS]
= 0.0485s

4 Methods Friedrich-Alexander University 21

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Therefore the total energy consumed per frame by the computation of the CNN is the
multiplication of the execution time by the power:

ECNN [Wh] = Pactive [W] · texec [h] = 3.4 [W] · 13.45 · 10−6 [h] ≈ 45.8 · 10−6 Wh ≈ 45.8 µWh

5 Evaluation Methods

In order to validate the energy saving potential of the adaptive sampling, we evaluated the
estimation approach with the labels predicted by the CNN and the ground truth manual
annotated labels.

The evaluation performance metrics was obtained using an overlapping window w, in order
to be adapted the spotting event characteristics.

To score the performance a similarity measure that quantifies the overlap between two
windows was used. The first window w is the window region detected by the object
detector labels and second is defined the by the ground truth labels.

A true positive (TP) is defined as an overlapping between the two windows is above a
threshold of 0.5. Analogously, the False Negative (FN) was the number of retrieved objects
where the ground truth windows region was overlapping intersection was not bigger than
the threshold i.e. the objects that a ideal object detector would have classified as positive
samples.

The detection results were evaluated using the recall(R), precision(P) and F1 score (F1)
metrics. Precision it is commonly defined as the fraction of correct classified samples (TP)
among all positive samples.

P =
TP

TP + FP
(22)

Recall is the fraction of the correct classified samples over the samples classified as positive
samples.

R =
TP

TP + FN
(23)

A further weighted average derived form recall and precision was used, F1 score or F-
measure (F1). This measure penalizes imbalanced precision and recall scores.

F1 =
2 · P ·R
P +R

(24)

The scores were tested in a 10-folds and after averaged. Firstly, average precision and
average recall was computed to summarize the precision for each day.

5 Evaluation Methods Friedrich-Alexander University 22

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

AP =
1

K

K∑
k=1

Pk AR =
1

K

K∑
k=1

Rk (25)

Eventually, AP was computed as weighted average of the APs from all days. The final
mean measures were taken averaged the 5 day records of our dataset. The analogous
procedure was followed for average recall. Finally, the F1 score was also derived.

6 Results

In this section, the results of the spotting event performance and energy consumption
reduction due to the adaptive sampling strategy are shown.

6.1 Spotting Performance

The results of the spotting event performance are presented in the following figures. The
average measure metrics within the 5 days is represented by the black curve. In these plots
the energy consumption measure was used to estimate the energy consumption percentage
in degradation of the performance

Figure 9: Recall and energy saving trade-off curve

6 Results Friedrich-Alexander University 23

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

The results show that the higher the compression factor, the lower the precision is. The
performance decay it is due to the compression factor makes implies less frames are sampled
and therefore detected.

Figure 10: Precision and energy saving trade-off curve

The performance based on the energy consumption trade off can be further seen in the
curve that relates both magnitudes.

Figure 11: F1 score and energy saving trade-off curve

6 Results Friedrich-Alexander University 24

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

6.2 Energy Consumption

The energy consumption was also calculated in Wh for every day and every parameter.
The mean energy consumption can be found that the consumption is still is suitable for
an egocentric video portable set up.

Figure 12: Energy consumption simulation of the framework for different parameters of the
linear response model

7 Discussion

Detection performance results of the proposed dietary spotting event in free living con-
ditions are an average of 44% of energy reduction precision, P = 0.59, recall R = 0.85,
F1-score F1 = 0.62. The F1 score gets a degradation of a 27 % with regards to the full
sampling rate F1 score which enable an energy saving up to 45% of the energy consump-
tion.

The curve results sometimes present a higher metric value than lower compression factors.
This is due to the characterization of the performance metrics with an overlapping window.
The difference performance within days it is due to the variability in activities. Every day
recording contains video content of distinct lighting conditions and variable number of
objects and events duration. These all factors explain the variability in the precision and
recall curves.

Secondly, we derived an energy model simulation for the egocentric video activity detection
pipeline incorporating a context measure. From this result can be seen that it is feasible to
implement the proposed architecture in a wearable device computing device. The context
measure overhead is compensated by the energy reduction and performance trade-off.

7 Discussion Friedrich-Alexander University 25

Seminar Project Adaptive Frame Rate for Egocentric Video July 15, 2019

Future work can expand this idea in several interesting directions, such as trying to reduce
the image resolution in order to reduce the computational overload. Further research is
required to evaluate other hardware configurations and optimize the hardware implemen-
tation of the context measure. In addition, further characterization of variables that may
affect the energy consumption could be studied.

We must recall that we can achieve a 60 % of the Sampling reduction still maintaining the
F1 score in the order of 0.6. Also there is high variance in each day and that is due to the
stochasticity of the behavioral pasterns of the camera wearer.

8 Conclusion

In this work, A new adaptive sampling strategy based on a motion context measure for ego-
centric video was presented. The new method enables to save energy keeping a promising
performance rate.

An energy model to estimate the amount of power consumption of the video activity
recgonition elements was derived. We validate aour adaptive sampling strategy in free-
living egocentric video by simulating the the camera and microcontroler.

Our approach enables energy saving and therefore the longer run time or reduce battery
size in egocentric video set up. The sampling strategy could be extended to other spotting
events applications further than the dietary activity recognition. The obtained results show
that our adaptive sampling strategy is a great trade off between energy detecting approach
and performance.

8 Conclusion Friedrich-Alexander University 26

References

[1] G. Schiboni and O. Amft, “A Privacy-Preserving Wearable Camera Setup for Dietary
Event Spotting in Free-Living,” in Proceedings of the International Conference on Per-
vasive Computing and Communications (PerCom) Workshops, pp. 872–877, 2018.

[2] C. Salim, A. Makhoul, R. Darazi, and R. Couturier, “Combining frame rate adaptation
and similarity detection for video sensor nodes in wireless multimedia sensor networks,”
09 2016.

[3] R. Possas, S. P. Caceres, and F. Ramos, “Egocentric Activity Recognition on a Budget,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 5967–5976, 2018.

[4] R. Likamwa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl

[5] J. Shi and C. Tomasi, “Good features to track,” pp. 593–600, 1994.

[6] C. Harris and M. Stephens, “A combined corner and edge detector,” in In Proc. of
Fourth Alvey Vision Conference, pp. 147–151, 1988.

[7] B. D. Lucas and T. Kanade, “An iterative image registration technique with an appli-
cation to stereo vision (ijcai),” vol. 81, 04 1981.

[8] J.-y. Bouguet, V. Tarasenko, B. D. Lucas, and T. Kanade, “Pyramidal implementation
of the lucas kanade feature tracker,” Imaging, vol. 130, no. x, pp. 1–9, 1981.

[9] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

I

List of Figures

1 Block diagram of our framework . 2
2 Adaptive Sampling overview . 3
3 Adaptive sampling block diagram. First features are detected for every

image. Then the optical flow is calculated for those features between two
frames. Finally the motion measure is derived from the optical flow, that
will be the input feed forwarded to the response model. 4

4 Pyramidal Lucas Kanade optical flow Detector 6
5 Example of histogram where the displacement context measure for day 2 is

shown. The y-axis is plotted in logarithm scale. 7
6 Linear response model for the context measure and compression factor of

the adaptive sampling framework. 8
7 CNN Arquitecture representation . 9
8 Shi Tomasi corner detector . 13
9 Recall and energy saving trade-off curve 23
10 Precision and energy saving trade-off curve 24
11 F1 score and energy saving trade-off curve 24
12 Energy consumption simulation of the framework for different parameters

of the linear response model . 25

List of Tables

1 Dataset Annotations Summary . 3
2 CMOS energy model characterization summary 11
3 ARM Cortex A7 technical especifications 12
4 Floating point operations for spatial image derivatives 13
5 Floating point operations for autocorrelation matrix 14
6 Floating point operations for autocorrelation weighted matrix 15
7 Floating point operations of the minimum eigenvalue computation 16
8 Floating point operations of selection of strongest corners 16
9 Floating point operations per frame for Shi Tomasi corner detection 17
10 FLOP Image pyramid computation . 18
11 FLOP spatial gradient matrix . 19
12 FLOP Spatial gradient matrix . 19
13 FLOP error vector . 19
14 FLOP optical flow equation solving . 20
15 FLOP Lucas Kanade optical flow . 20
16 Darknet CNN FLOPS operation . 21

II

	Introduction
	Related work
	Methodology Summary
	Methods
	Dataset
	Adaptive Sampling
	Machine Learning Pipeline
	Energy Model

	Evaluation Methods
	Results
	Spotting Performance
	Energy Consumption

	Discussion
	Conclusion
	References
	List of Figures
	List of Tables

